Published Papers and Pre-Prints by the DarkSide Collaboration
DarkSide Collaboration. “Design and construction of a new detector to measure ultra-low radioactive-isotope contamination of argon”. Journal of Instrumentation, 15 (2020): P02024. [ arXiv: 2001.08106 ]
DarkSide-50 Collaboration. “Effective field theory interactions for liquid argon target in DarkSide-50 experiment”. Physical Review D, 101 (2020): 062002. [ arXiv: 2202.07794 ]
DarkSide-50 Collaboration. “Measurement of the ion fraction and mobility of 218Po produced in 222Rn decays in liquid argon”. Journal of Instrumentation, 14 (2019): P11018. [ arXiv: 1907.09332 ]
DarkSide Collaboration. “DarkSide-50 532-day Dark Matter Search with Low-Radioactivity Argon”. Physical Review D98 (2018): 102006. [ arXiv: 1802.07198 ]
DarkSide Collaboration. “Low-mass Dark Matter Search with the DarkSide-50 Experiment”. Physical Review Letters121 (2018): 081307. [ arXiv: 1802.06994 ]
DarkSide Collaboration. “Constraints on Sub-GeV Dark Matter-Electron Scattering from the DarkSide-50 Experiment”. Physical Review Letters121 (2018): 111303. [ arXiv: 1802.06998 ]
DarkSide Collaboration. “Electroluminescence pulse shape and electron diffusion in liquid argon measured in a dual-phase TPC”. Nuclear Instruments and Methods A, 904 (2018): 23-34. [ arXiv: 1802.01427 ]
DarkSide Collaboration. “DarkSide-20k: A 20 Tonne Two-Phase LAr TPC for Direct Dark Matter Detection at LNGS”. The European Physical Journal Plus, 133 (2018): 131arXiv: 1707.08145 ]
DarkSide Collaboration. “The Electronics, Trigger and Data Acquisition System for the Liquid Argon Time Projection Chamber of the DarkSide-50 Search for Dark Matter”. Journal of Instrumentation, 12 (2017): P12011. [ arXiv: 1707.09889 ]
DarkSide Collaboration. “CALIS – a CALibration Insertion System for the DarkSide-50 dark matter search experiment”. Journal of Instrumentation, 12 (2017): T12004. [ arXiv: 1611.02750 ]
DarkSide Collaboration. “Simulation of argon response and light detection in the DarkSide-50 dual phase TPC”. Journal of Instrumentation, 12 (2017): P10015. [ arXiv: 1707.05630 ]
DarkSide Collaboration. “Effect of Low Electric Fields on Alpha Scintillation Light Yield in Liquid Argon”. Journal of Instrumentation, 12 (2017): P01021. [ arXiv: 1611.00241 ]
DarkSide Collaboration. “The Electronics and Data Acquisition System for the DarkSide-50 Veto Detectors”.
Journal of Instrumentation, 11 (2016): P12007. [ arXiv: 1606.03316 ]
DarkSide Collaboration. “Results from the first use of low radioactivity argon in a dark matter search”. Physical Review D, 93 (2016): 081101(R). [ arXiv: 1510.00702 ]
DarkSide Collaboration. “The veto system of the DarkSide-50 experiment”. Journal of Instrumentation, 11 (2016): P03016. [ arXiv: 1512.07896 ]
P. Agnes et al. “First results from the DarkSide-50 dark matter experiment at Laboratori Nazionali del Gran Sasso”. Physics Letters B, 743 (2015): 456-466. [ arXiv:1410.0653 ] Numerical information for Fig. 4: Distribution of the events in the scatter plot of S1 vs. f90 after all quality and physics cuts
C. E. Aalseth et al. “The DarkSide Multiton Detector for the Direct Dark Matter Search”. Advances in High Energy Physics, 2015 (2015): 541362.
T. Alexander et al. “DarkSide search for dark matter”. Journal of Instrumentation8 (2013): C11021.
T. Alexander et al. “Light yield in DarkSide-10: A prototype two-phase argon TPC for dark matter searches”. Astroparticle Physics49 (2013): 44-51. [ arXiv: 1204.6218 ]
DarkSide Collaboration. “The DarkSide Program at LNGS”. (2011) [ arXiv: 1109.2979 ]
DarkSide Collaboration. “DArkSide-50 Proposal”. (2008). [ pdf ]
 
DarkSide-related papers
M. Cadeddu et al. “Directional dark matter detection sensitivity of a two-phase liquid argon detector”. Journal of Cosmology and Astroparticle Physics, 2019 (2019): 014 [ arXiv: 1704.03741 ]
P. Agnes et al. “Measurement of the the liquid argon energy response to nuclear and electronic recoils”. [ arXiv: 1801.06653 ]
R. Saldanha, L. Grandi, Yann Guardincerri, and T. Wester. “Model Independent Approach to the Single Photoelectron Calibration of Photomultiplier Tubes”. Nuclear Instruments and Methods A863 (2017): 35-46. [ arXiv: 1602.03150 ]
S. Westerdale, P.D. Meyers. “Radiogenic neutron yield calculations for low-background experiments”. Nuclear Instruments and Methods A875 (2017): 57-64 . [ arXiv: 1702.02465 ]
S. Westerdale et al. “Quenching measurements and modeling of a boron-loaded organic liquid scintillator”. Journal of Instrumentation12 (2017): P08002. [ arXiv: 1703.07214 ]
J. Xu et al. “First measurement of surface nuclear recoil background for argon dark matter searches”. Physical Review D96 (2017): 061101(R). [ arXiv: 1609.07089 ]
DarkSide Collaboration. “Cryogenic Characterization of FBK RGB-HD SiPMs”. Journal of Instrumentation, 12 (2017): P09030. [ arXiv: 1705.07028 ]
F. Acerbi et al. “Cryogenic Characterization of the FBK NUV-HD SiPMs”. IEEE Transactions on Electron Devices64 (2017): 521-526. [ arXiv: 1610.01915 ]
D. Franco et al. “Solar neutrino detection in a large volume double-phase liquid argon experiment”. Journal of Cosmology and Astroparticle Physics1608 (2016): 017. [ arXiv: 1510.04196 ]
S. Westerdale, E. Shields, and F. Calaprice. “A Prototype Neutron Veto for Dark Matter Detectors”. Astroparticle Physics79 (2016): 10-22. [ arXiv: 1509.02782 ]
E. Segreto. “Evidence of delayed light emission of TetraPhenyl Butadiene excited by liquid Argon scintillation light”. Phys. Rev. C91 (2015): 1035503. [ arXiv: 1411.4524 ]
J. Xu et al. “A study of the trace 39Ar content in argon from deep underground sources”. Astroparticle Physics66 (2015): 53-60. [ arXiv: 1204.6011 ]
A. Empl and E. Hungerford. “A FLUKA Study of β-delayed Neutron Emission for the Ton-size DarkSide Dark Matter Detector”. (2014) [ arXiv: 1407.6628 ]
H.O. Back et al. “First Large Scale Production of Low Radioactivity Argon From Underground Sources”. (2012) [ arXiv: 1204.6024 ]
H.O. Back et al. “First Commissioning of a Cryogenic Distillation Column for Low Radioactivity Underground Argon”. (2012) [ arXiv: 1204.6061 ]
A. Wright, P. Mosteiro, B. Loer and F. Calaprice. “A Highly Efficient Neutron Veto for Dark Matter Experiments”. Nuclear Instruments and Methods A, 644 1 (2011): 18-26. [ arXiv: 1010.3609 ]
D. Acosta-Kane et al. “Discovery of underground argon with low level of radioactive 39Ar and possible applications to WIMP dark matter detectors”. Nuclear Instruments and Methods A, 587 1 (2008): 46-51.
 
Conference Proceedings by the DarkSide Collaboration
S. Davini, “The DarkSide awakens”. Presented at TAUP 2015.
S. Westerdale, “The DarkSide-50 outer detectors”. Presented at TAUP 2015.
L. Marini, “Current status of the dark matter experiment DarkSide-50”. Presented at IFAE 2015.
D. D’Angelo, “DarkSide50 results from first argon run”. Presented at PANIC 14. [ arXiv: 1501.03541 ]
S. Davini, “A first walk on the DarkSide”. Presented at ICHEP 2014.
L. Pagani, “The DarkSide veto: muon and neutron detectors”. Presented at IFAE 2014.
P. Meyers, “DarkSide-50: A WIMP Search with a Two-phase Argon TPC”. Physics Procedia, 61 (2015): 124-129. Presented at TAUP 2013.
S. Davini, “Enter the Dark Side”. Nuclear Instruments and Methods A, 742 (2014): 183-186. Presented at RICAP 13.
L. Pagani, D. D’Angelo and S. Davini, “Active Neutron Detector for direct Dark Matter searches with the DarkSide-50 experiment at Gran Sasso”. Presented at EPS-HEP 2013.
 
DarkSide-Related Theses
Watson, A. “Transverse Position Reconstruction in a Liquid Argon Time Projection Chamber using Principal Component Analysis and Multi-Dimensional Fitting”. (2017) (English)
Sanford, C. “Alphas and Surface Backgrounds in Liquid Argon Dark Matter Detectors”.Ph.D. Thesis. (2017) (English)
Pagani, L. “Direct dark matter detection with the DarkSide-50 experiment”.Ph.D. Thesis. (2017) (English)
Agnes, P. “Direct Search for Dark Matter with the DarkSide Experiment”.Ph.D. Thesis. (2016) (English)
Westerdale, S. “A Study of Nuclear Recoil Backgrounds in Dark Matter Detectors”.Ph.D. Thesis. (2016) (English)
Fan, A. “Results from the DarkSide-50 Dark Matter Experiment”.Ph.D. Thesis. (2016) (English)
Brodsky, J. “xy Position Reconstruction in DarkSide-50”.Ph.D. Thesis. (2015) (English)
Cao, H. “A Study of Nuclear Recoils in Liquid Argon Time Projection Chamber for the Direct Detection of WIMP Dark Matter”.Ph.D. Thesis. (2014) (English)
Sbraccia, F. “Characterization of an electronic front-end for Dark Matter related signals conditioning”. Undergraduate Thesis. (2014) (English)
Crippa, L. “Caratterizzazione del Rivelatore di Neutroni per la Rivelazione Diretta di WIMPs con DarkSide”. Master’s Thesis. (2013) (Italian)
Marini, L. “Dark Matter Direct Detection with DarkSide-50: Analysis of Early Data”.Master’s Thesis. (2013) (English)
Bossa, M. “Studio della rivelazione di materia oscura mediante apparati criogenici per la rivelazione diretta: l’esperimento DarkSide”. Master’s Thesis. (2012) (Italian)
Love, C. E. “Design and Analysis for the DarkSide-10 Two-Phase Argon Time Projection Chamber”. Ph.D. Thesis. (2013) (English)
Pagani, L. “Rivelazione diretta di materia oscura con DarkSide: sviluppo, installazione e collaudo del rivelatore di neutroni”. Master’s Thesis. (2013) (Italian)
Passadore, S. “Discriminazione degli Impulsi di Segnali e di Fondo Nell’Esperimento di Materia Oscura DarkSide-50”. Undergraduate Thesis. (2012) (Italian)
Loer, B. M. “Towards a Depleted Argon Time Projection Chamber WIMP Search: DarkSide Prototype Analysis and Predicted Sensitivity”. Ph.D. Thesis. (2011) (English)
Fan, A. “First Data from the Second Iteration of the DarkSide 10 kg Detector”. Undergraduate Thesis. (2011) (English)